Question

A computer is going to choose a letter at random from the text of an English novel. The table shows the probabilities of the computer choosing the various vowels.

Vowel	A	E	I	O	U
Probability	$\mathbf{0 . 0 6}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 3}$

(a) What is the probability it will not choose a vowel?

(b) The probability that the computer will choose the letter \mathbf{T} is $\mathbf{0 . 0 9}$.

The computer chooses a letter at random, and then a second, and then a third letter. What is the probability that these letters will be \mathbf{E}, \mathbf{A} and \mathbf{T} (in that order)?

(c) How many ways can these three letters be arranged? Show each arrangement.

Question

(a) The diagram shows two touching circles; c_{1} and c_{2}. Using the diagram to estimate the centres and radii as accurately as you can, find the equations of the two circles.

$$
\begin{aligned}
& \left.C_{1}-R=4, C=(0,0)\right] . \\
& C_{2}-R=9.5, C=(12,6) \\
& \text { C. }(x-h)^{2}+(y-k)^{2}=r^{2} \\
& x^{2}-2 x+h^{2} c+y^{2}-2 y h+1 R^{2}=r^{2} \\
& \begin{array}{c}
x^{2}-2 x(0)+(0)+y^{2}-2 y(0)+(0)^{2}=16 \\
\left.x^{2}+y^{2}=16\right)^{2}
\end{array} \\
& \text { c. } \quad x^{2}-2 x h^{2}+h^{2}+y^{c}-2 y h+k^{2}=r^{2}
\end{aligned}
$$

(b) It is claimed that the line with equation $x-y+6=0$ is a tangent to both circles. By performing suitable calculations, decide whether this claim is true or false. Explain your answer.

$$
x=y-6 \quad(y-6)^{2}+y^{2}=16=162+y^{2}=12 y+36+y^{2}=0
$$

Move than me paint of contact \rightarrow not a

$$
\begin{aligned}
& (x-12)^{2}+(y-6)^{2}=90.25 \\
& (y-6-12)^{2}+(y-6)^{2}=90.25 \\
& (y-18)^{2}+(y-6)^{2}=90.25 \\
& y^{2}-36 y+324+y^{2}-12 y+36=90.25
\end{aligned}
$$

$2 y^{2}-45 y+269.75=0$ Mme than one point
$y^{2}=24 y+134 \cdot 875=0$ oof contact

Question

In this diagram state whether each of the following statements is true or false (by placing a \checkmark in the appropriate box) and in each case give a reason for your answer.

a) $k \perp m$

True	False
	x

b) area $\Delta G I J=32$
sq. units

True	False
x	

$$
=-\frac{6}{4}
$$

c) the equation of k is $y=-\frac{2}{3} x+6$

True	False
	x

d) $m \perp n$

True	False
	x

$$
\begin{aligned}
& \text { Slope of } M=-\frac{1}{2} \\
& \text { Slue of } n=\frac{1}{2} \\
& \text { if } M
\end{aligned}
$$

e) the line $y=-2 x+1$ is perpendicular to n

f) the line $y=2 x$ is parallel to m

True	False
	x

g) $\triangle G I J$ is an isosceles triangle

h) the x-axis is the bisector of $\angle G I J$

True	False

$$
\begin{aligned}
& \tan A=\frac{-4}{8} \quad \tan B=\frac{4}{8} \\
& \therefore x-a \times i s \text { bisects }<G I]
\end{aligned}
$$

Question

Construct an equilateral triangle. Prove that the inscribed circle and the circumcircle have the same centre.

Question

(a) The diagram shows a rhombus (that is, a parallelogram with four sides of equal length). The midpoints of two of its sides are joined with a straight line segment.

Calculate the size of angle A. Show how you found your answer.

(b)

Not drawn
to scale.

Find the value of \boldsymbol{a}. Show how you found your answer.

Section B

Contexts and Applications

Question

(a)The modern or Olympic hammer throw is an athletic throwing event where the object is to throw a heavy metal ball attached to a wire and handle. In the diagram below A_{2} represents a portion of the throwing circle and A_{l} represents the area in which the hammer should land. The diagram is not drawn to scale.

(i) A net is to be erected at the end of the landing area. The foundation consists of a single row of bricks; each brick is 41 cm long. How many bricks will be needed to lay the foundations?
(ii) The area A_{l} will be planted with grass. A 10 kg bag of lawn seed covers approximately $220 \mathrm{~m}^{2}$. How many bags of grass seed must be bought?

Show all your work and state any assumptions you make.

$$
\begin{array}{ll}
\left(\frac{\theta_{0}}{r}\right)^{2} & L=2 \pi r\left[\frac{\theta}{360^{\circ}}\right] \\
L=(2)(\pi)(95)\left[\frac{70^{\circ}}{360^{\circ}}\right]
\end{array}
$$

$$
\begin{array}{ll}
\text { cm116064 } & L=116.064 \mathrm{~m}^{2} \\
11606.4 \pm 41 & L=1 \\
=283-08 &
\end{array}
$$

284 bags needed

$$
\text { Area of } A_{i}=A=\pi r^{2}\left[\frac{Q}{360}\right]
$$

Area of $A_{2}=A=\pi r^{2}\left[\frac{\theta}{360}\right]$

$$
\begin{aligned}
& A=\pi(1)^{2}\left[\frac{70}{360}\right] \\
& A=-06108
\end{aligned}
$$

$$
\begin{aligned}
A_{1}-A_{2}=5513 \cdot 058- & 06108=5512 \cdot 99 \div 220 \\
& =25 \cdot 059
\end{aligned}
$$

ans $=26$ bags

Question

The lengths of the ring fingers of 30 Irish students chosen randomly from amongst those who completed the censusatschool phase 9 questionnaire are displayed below. The measurements are in cm.

7.5	8	7	6	7.5
8.3	6.5	8	5	9
7.3	8.5	7	7	9
7.2	6.5	7	10	9
3	4	6.6	6	8
7	8	7	7.5	8.4

(a) Use the data to investigate whether ring finger lengths are normally distributed. Explain your answer.

(b) Sharon measured the length of her ring finger and found it to be 11.3 cm . Her boyfriend says her finger length is most unusual; Sharon disagrees. By calculating the mean and standard deviation of the distribution above, present evidence to support either Sharon's argument, or that of her boyfriend.

Mathematics (Project Maths - Phase 2)
Pre-Leaving Certificate - Ordinary Level Paper 2 February 2011

