Question
(a) Show that the equation

$$
15 \cos ^{2} x=13+\sin x
$$

may be written as a quadratic equation in $\sin x$.
\qquad
(b) Solve the quadratic equation for $\sin x$, and hence solve for all values of x where $0^{\circ} \leq x \leq 360^{\circ}$. Give your answers) correct to the nearest degree.

Let $x=\sin x$

$$
15 x^{2}+x-2=0
$$

$$
(5 x+2)(3 x-1)
$$

$5 \sin x=-2$

$$
3 \sin x=1
$$

$\sin x=-\frac{2}{5}$

$$
\sin x=\frac{1}{3}
$$

Reference angle 23.6°

$$
19.47
$$

$$
\begin{array}{rrr}
180^{\circ}+23.6^{\circ} & =203 \cdot 6^{\circ} & 180^{\circ}-19.47= \\
360-23.6^{\circ} & =336^{\circ} & 160.53^{\circ} \\
\text { ans } & =219^{\circ} 161^{\circ}, 204^{\circ}, 336^{\circ} 3
\end{array}
$$

Question

(a) On the grid provided draw circle p whose equation is $x^{2}+y^{2}-4 x-2 y-5=0$.

(b) Use two different methods to determine whether the line $l: 3 x+y+3=0$ is tangent to this circle p.

Question

(a) For each of the four scatter plots below, estimate the correlation coefficient.

(b) Using your calculator, or otherwise, find the correlation coefficient for the data given in the table. Give your answer correct to two decimal places.

Answer: 0.76

x	y
0.0	0.5
5.0	1.3
5.2	3.3
6.1	6.7
9.3	4.5
9.5	4.6
9.9	6.5

Question
(a) $A B C$ is a triangle, and D is a point on [BC].

The lengths $|A B|,|A D|,|A C|$ and $|B D|$ are as shown in the diagram.

Find $|D C|$, correct to one decimal place.
$\triangle A B D \quad S^{2}=16+16-2(4)(4) \cos D$
$\cos D=7 / 32 \quad D=77^{\circ}$
$\angle C D A=103^{\circ}$
$7^{2}=4^{2}+x^{2}-2(4)(x) \cos 103^{\circ}$
$49=16+x^{2}-8 x \cos 103^{\circ}$
$x^{2}+1.8 x-33=0 \quad a=1 \quad b=1.8 c=33$
$-\frac{1.8 \pm \sqrt{3.24+132}}{2}=-\frac{1.8 \pm \sqrt{135.24}}{2}$
$x=4.9 \quad$ or $\quad-6.7$
$\therefore \therefore \quad x=4.9 \quad \mid D C 1=4.9$
(b) Consider the diagram below.

Express $\cos \alpha$ and $\cos \beta$ in terms of the labelled lengths

$$
\begin{array}{ll}
c^{2}=d^{2}+p^{2}-2(d)(p) \cos \alpha & b^{2}=q^{2}+d^{2}-2(q)(d) \cos \beta \\
c^{2}-d^{2}-p^{2}=-2 d p \cos \alpha & b^{2}-q^{2}-d^{2}=-2 q d \cos \beta \\
\frac{c^{2}-d^{2}-p^{2}}{-2 d p}=\cos \alpha & \frac{b^{2}-q^{2}-d^{2}}{-2 q d}=\cos \beta
\end{array}
$$

(ii) Show that $p b^{2}+q c^{2}=(p+q)\left(p q+d^{2}\right)$

$$
\begin{aligned}
& \cos \alpha=-\cos \beta \\
& c^{2} \frac{-p^{2}-d^{2}}{-2 p}=\frac{b^{2}-q^{2}-q^{2}}{-2 d q} \\
& -2 d q c^{2}-2 d q p^{2}+2 d^{2} q=2 p d b^{2}-2 p d^{2}-2 p d q^{2} \\
& q p^{2}+q d^{2}+p d^{2}+p q^{2}=p b^{2}+q c^{2} \\
& p\left(p q+d^{2}\right)+q\left(p q+d^{2}\right)=p b^{2}+q c^{2} \\
& \left(p+q\left(p q+d^{2}\right)=p b^{2}+q c^{2}+\right.
\end{aligned}
$$

Question
(a) The following formula relates to the binomial distribution.

$$
P(X=r)=\binom{n}{r} p^{r} q^{n-r}
$$

(i) State what each of the letters p, q, n, and r represents in the formula above.
(i) State what each of the letters p, q, n, and r represents in the formula above. p is The probability of success
q is The probability of faience
n is number of trials
r is number of successes.
(ii) Describe the type of experiment that results in a random variable that has a binomial distribution.

(b) In a certain type of archery competition, Laura hits the target with an average of two out of every three shots. The shots are independent of each other. During one such competition, she has ten shots at the target.
(i) Find the probability that Laura hits the target exactly nine times.

Give your answer correct to three decimal places.

$$
\begin{aligned}
& p=2 / 3 \quad q=1 / 3 \quad n=10 \quad r=9 \\
& p(9 \text { lis })=\binom{10}{9}\left(\frac{2}{3}\right)^{9}\left(\frac{1}{3}\right)^{\prime}=\frac{10 \times 2^{9}}{3^{10}}=0.0867 \\
& P(9 \text { hits })=0.087
\end{aligned}
$$

(ii) Find the probability that Laura hits the target fewer than nine times. Give your answer correct to three decimal places.

$$
\begin{aligned}
& P(10 \text { hits })=\left(\frac{2}{3}\right)^{10}=0.0173 \\
& P(9 \text { hits })=0.0867 \\
& P(<9)=1-(0.0867+0.0173)= \\
& 0.8960
\end{aligned}
$$

Thus fewer than 9 times $\Rightarrow 0.896$

Question

The diagram shows a semicircle $A B C$ on $[A C]$ as diameter. The mid-point of $[A C]$ is O, and angle $A O B=\theta$ radians, where $0<\theta<\frac{\pi}{2}$. The area of the segment S_{1} cut off by the chord $B C$ is twice the area of the segment S_{2} bounded by the chord $A B$.

Show that $3 \theta=\pi+\sin \theta$
Area $S_{1}=2$ Area S_{2}
Area $S_{1}=$ Area of a sectore-area of $\triangle B O C$

$$
\left.\frac{1}{2}|0 c|^{2}(180-8)-\frac{1}{2}|0 c| 100 \right\rvert\, \sin (180-8)
$$

$$
\frac{1}{2}|0|^{2}(\mid 80-\theta)-\frac{1}{2}|0|^{2} \sin (180-\theta)
$$

Area of $S_{2}=$ Area of Sector -area of $\triangle B O A$

$$
\left.\frac{1}{2}|o a|^{2}(\theta)-\frac{1}{2} \right\rvert\, \text { oa| lob } \mid \sin \theta
$$

$$
\frac{1}{2}|0 a|^{2}(\theta)-\frac{1}{2}|0 a|^{2} \sin \theta
$$

$$
\begin{aligned}
& \frac{1}{2}|o|^{2}[(\pi-\theta)-\sin (\pi-\theta)]=2\left[\frac{1}{2}|o a|^{2}(\theta-\sin \theta)\right] \\
& {[\pi-\theta-\sin (\pi-\theta)]=2(\theta-\sin \theta)} \\
& {[\pi-\theta-\sin \pi \cos \theta+\cos \pi \sin \theta]=2 \theta-2 \sin \theta} \\
& \pi-\theta-0-\sin \theta=2 \theta-2 \sin \theta \\
& -\theta-2 \theta=-\pi-\sin \theta \\
& 3 \theta=\pi+\sin \theta
\end{aligned}
$$

Question
20% of the bolts produced by a machine are defective.
(a) Find the probability that, in a group of five bolts randomly selected from a batch produced by the machine, at most two are defective.
$\left.\begin{array}{cl}p(r)=\binom{n}{r} p^{r} q n-r & q=\text { success } \\ p(0)+p(1)+p(2) & q=\text { failure } \\ P(0)=\binom{5}{0}(0.2)^{0}(0.8)^{5}=0.32768 \\ P(1)=\binom{5}{1}(0.2)^{1}(0.8)^{4}=0.4096 \\ p(2)=(0.2)^{2}(0.8)^{3}=0.2048 \\ 2\end{array}\right)\left(\begin{array}{l}\text { (1) }\end{array}\right.$
(b) A shipment of 250 packets of 5 bolts produced by this machine is inspected. A packet is rejected if it has more than two defective bolts. Show that approximately 14 packets are expected to be rejected.

Question
$A B C$ is an equilateral triangle inscribed in a circle centre O . A radius is drawn from O through the midpoint of $A B$ to meet the circumference of the circle at D.
(a) Construct this diagram accurately, showing all construction marks.

(b) Prove that $O D A$ is equilateral.

Let E be the Midpoint of $A B$

$$
\begin{array}{ll}
\triangle A O E=\triangle B O E \quad|O Q|=|O B| \text { radio, } \\
& |A E|=|E B| \text { midpoint } E \\
& |O E|=|O E| \text { common }
\end{array}
$$

$|\angle A O B|=120^{\circ}$ on same ara as $|\angle A C B|=60^{\circ}$
But $\angle A O E=\angle B O E \Rightarrow \angle A O E=60^{\circ}$

$$
|O A|=|O D| \text { both radii } \triangle O A P \text { isoseles }
$$

$$
|\angle O A D|=|\angle O D A|=\frac{1}{2}\left(180^{\circ}-60^{\circ}\right)=60^{\circ}
$$

$\therefore O D A$ is equilateral

Question
$A B C$ is an isosceles triangle such that $|A B|=|A C|$ and D is a point on $A B$ such that $C D \perp A B$. Represent this on a diagram.

Show that $|\angle B C D|=1 / 2|\angle B A C|$

Section B

Question

(a) Forensic investigators encounter crime scenes containing traces of blood. A spherical drop of blood makes an elliptical spatter when it hits the ground at an angle.

Investigators have mapped out the crime scene below showing two blood spatters on the floor at C and D. They measure a spatter in order to calculate the angle of impact and trace this back to an
 approximate starting place (assuming the blood drops travel in a straight line).

Since they know the drop started as a sphere, the width of the spatter drop will be the same as its diameter. They record the measurements of the blood spatter X:

Blood spatter from drop X

Estimate the victim's height given that the blood originated from a chest wound. Show all your working and state any assumptions you make.

Question

(a) In a component factory, machine A produces 30\% of the output, machine B 25% and machine C the remainder.

Over a period of time, 1% of the output from machine A is found to be defective, 1.2% from machine B and 2% from machine C.
(i) On a given day, the three machines produce a total of 10,000 components. How many components are likely to be defective?

(ii) A quality controller selects a component at random from that day's output and finds that it is defective. What is the probability that this component was produced by machine B?

(b) Cereal packets filled by a machine have a mean of 200 grams with a standard deviation of 10 grams.
(i) In a sample of 300 packets, how many can be expected to weigh more than 215 grams? Show all your work.

(ii) The machine is adjusted and another sample of 300 is checked. If the expected value of the number of packets that weigh more than 215 grams is now 10 , calculate the new mean, assuming that the standard deviation after adjustment is the same as before?

(c) A company states that 20% of the visitors to its website purchase at least one of their products. A sample of 400 site visitors is checked and the number who purchased a product is found to be 64 .
(i) Calculate the margin of error in this case.

(ii) Based on this sample, should the company's claim be accepted? Explain your reasoning.

Question

Some research was carried out into the participation of girls and boys in sport. The researchers selected a simple random sample of fifty male and fifty female teenagers enrolled in GAA clubs in the greater Cork area. They asked the teenagers the question: How many sports do you play?
The data collected were as follows:

Boys	Girls
$0,4,5,1,4,1,3,3,3,1$,	$3,3,3,1,1,3,3,1,3,3$,
$1,2,2,2,5,3,3,4,1,2$,	$2,2,4,4,4,5,5,2,2,3$,
$2,2,2,3,3,3,4,5,1,1$,	$3,3,4,1,6,2,3,3,3,4$,
$1,1,1,2,2,2,2,2,3,3$,	$4,5,3,4,3,3,3,4,4,3$,
$3,3,3,3,3,3,3,3,3,3$	$1,1,3,2,1,3,1,3,1,3$

(a) Display the data in a way that gives a picture of each distribution.

(b) State one difference and one similarity between the distributions of the two samples.

(c) Do you think that there is evidence that there are differences between the two populations? Explain your answer.

Note: you are not required to conduct a formal hypothesis test.
Answer: \qquad
Justification:
think the sampler are so sinuliae that it is unlikely t be due to choice.
(d) The researchers are planning to repeat this research on a larger scale. List two improvements they could make to the design of the research in order to reduce the possibility of bias in the samples. Explain why each improvement you suggest will reduce the likelihood of bias.

They caned sample people other than those in GAA clubs as this cued result is paten lar bias
They cued include urbantrural areas in a vide ace than just Cue

Question

The Wonder Building is an arched building that does not need any support inside, due partly to the fact that its shape is an arc of a circle.

The photograph shows a Wonder Building being used in Antarctica.

The arc for a Wonder Building can be a full semicircle or less than a semicircle. It cannot be more than a semi-circle. The "span" of the building is the total width from one side of the arch
 to the other.
(a) A particular Wonder Building has a span of 30 metres and a height of 10 metres. Find the radius of the arc.

(b) A customer wants a building with a span of 18 metres and a height of 10 metres.
(i) What arc radius would be required to give such a building?

(ii) Explain why the Wonder Building that the customer wants is not possible.

(c) An air force needs a Wonder Building to house a Tornado military jet.

The dimensions of the aircraft are as follows:

- Wingspan: 14 metres
- Height: 6 metres
- Height of wingtips above ground: 2 metres.

The shelter must be at least 0.5 metres above the top of the tail, and at least 1 metre clear horizontally of the wingtips.

For the shelter to have the exact clearance required, find the radius of the arc.

