The growth from modelling all quantities and actions in a combining or separating problem to abstract reasoning with numbers is not a smooth or consistent transition for students.

Problem solving reminder: If you are going to use this task remember, answers are important but what is more important is the mathematics students can learn from engaging in the tasks

Task:

Students were asked to solve the following without pen, pencil or calculator:

$$
38+29
$$

Amy's group said:

$$
67 \text { because } 40+27=57
$$

What was their strategy?
Will this strategy always work?
Justify you answer with representations.

Thoughts for teachers

- How would you use this task with your students?
- What prior experiences should your students have had in order to be able to engage with this task?
- What misconceptions is this task likely to expose?
- Would you modify the task in any way for your students?
- What mathematics do you want your students to learn from engaging in this task?
- What questions might you ask as your students as they are working on the task
- Can you write a mathematical sentence to show Amy's group's strategy?
- What is Amy's group saying about $38+29$?
- Amy's group is saying that $38+29$ is the same as something else; what is it?
- Can you write that as a mathematical sentence?
- Use Amy's strategy to solve this problem...
- Will Amy's strategy work for all whole numbers? Convince me.

Making sense of the evidence

Teacher: Your picture shows the strategy works for $38+29$. Would it work for other numbers too?

Seosamh: Yes look 'cos it doesn't matter if you are going to put them together if you take 2 from one group and give it to another you'll have the same amount like in the square

Teacher: Would the strategy work for other numbers like say $35+29$?

Would the strategy work for subtraction? Why? Why not?
Justify your decision
Think: What mathematics do you want your students to learn from extending the task in this way?

